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SYNOPSIS
/2REZ

After a brief review of the state-of-the-art the problematics
pertinent to a discrete element approach to dynamic shell problems
are discussed. In the derivation of the discrete element properties
using unit displacement theorem, the stiffness coefficients of a square
flat shell element are developed by solving the differential equations of
the theory of elasticity by finite difference methods. Symmetry in the
stiffness matrix has been achieved via virtual work of the edge forces.
Monotonic convergence of the solution is assured by satisfying the
compatibility requirements of stresses and displacements within the
element as well as along the adjoining edges. The basically different
convergence criteria of small vs. large element solutions are treated.
Expressing the arbitrary (in space and time) loads by Fourier series
the differential equations of motions are transformed into coupled
algebraic equations well suited for computer solution. The frequencies
of the free vibration are obtained as eigenvalue solutions of the
dynamical matrix. The accuracy of the method is checked against
known analytical solutions. The procedure for automation of the solu-
tion is outlined along with the areas of future research.
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I. INTRODUCTION

The modern tendency in structural engineering is characterized
by the increased use of shell structures because of their inherent
structural, economical and other advantages. Where complete en-
closure is required as in the case of aerospace, naval structures,
pressure vessels, etc., the use of shell structures is mandatory,
since their remarkable load carrying capacity originating from their
three-dimensional load-carrying action permits the use of lighter,thus
more economical structures.

The more effective use of shells is considerably hampered by
the mathematical difficulties inherent to the classical shell theories.
Even in the case of static loads, solution of the differential equations of
equilibrium and compatibility (except for the most elementary cases) is
too complex for the average designer. These mathematical difficulties
increase exponentially in case of dynamic loading, non-symmetrical
geometry, arbitrary load distribution, arbitrary boundary conditions,
etc., until they reach the point where the solution of the specific
problem, for all practical purposes, is prohibitive or even impossible.

On the other hand, in spite of these mathematical difficulties,
a great need exists to rationally design modern aerospace, civil and
naval structures consisting of single and double curved shells of arbi-
trary shape and boundary condition subjected to arbitrary (in space and
time) dynamic loading.

During recent years the development of high speed electronic
computers coupled with improved matrix procedures made it possible
to attack the structural dynamics problem of complex aerospace
structures using discrete elements of the continuum andtreatingthe
complex structure as an assemblage of finite elements. Although, as
is the case in all new developments, considerable further research
effort is required to solve all problems pertinent to discrete element
methods, it already can be stated that this relatively new method is
able to furnish satisfactory information regarding static and dynamic
stress distribution in complex structures, where the application of the
classical theory of elasticity fails completely.

The key to the solution of dynamic response of shells of arbi-
trary shape by discrete element method is the development of suitable
stiffness (or influence) coefficients of the shell elements, which
describes the elastic characteristics of the structure and ensures



monotonic convergence of the solution taking into account both the
membrane and bending stresses. Thus the basic objective of the re-
search described in this report was directed toward the development of
such compatible stiffness coefficients for square shell elements, first
disregarding the effect of curvature.

In spite of the fact that in recent years considerable effort has
been reported in the pertinent literature concerning the development of
stiffness coefficients for shell elements (see References), a basically
new approach has been taken herein to avoid the known shortcomings of
previous solutions. > Furthermore, the possibility of a unique solution
based on the use of ''large'' discrete elements vs. small ones offering
considerable economy coupled with high accuracy has been discnssed.
The economical advantage of the large element method is evident since
it reduces the order of the stiffness matrix considerably, thus elimi-
nating partially the problems inherent to operation with large matrices
resulting in savings in the required computer operation time.

The second, equally important, objective was to outline the
course of further developments in the field of stiffness matrix solution
of complex static and dynamic shell problems.

Considerable advantage of the discrete element method based
on stiffness method approach is its versatility on one hand, and its
simplicity, on the other. That is to say that basically the same method
can be used regardless if the shell is single or double curved (including
negative Gaussian curvature), isotropic or orthotropic, having variable
thickness, and stiffness. Though considerable research is required to
determine the stiffness coefficients, this work should be done only
once, since its results are reusable. The same can be said about
thermo stress and non-linear stress problems;,etc. 4

Furthermore, the fact that the discrete element approach uses
methods familiar to structural engineers instead of those of specialized
structural researchers, should not be overlooked in practical applica-
tion. Similarly, no new programing is required, since standard pro-
grams available at any computer center are used underlying again the
economy of the solution. This economy can be further expanded by the
possibility of complete automation of the procedure.

In order to check the accuracy of the solution of the method
presented, the results of various two and three dimensional stress
problems have been compared with available analytical solutions.



Simultaneously, the convergence of the finite element solution to the
right solution has been carefully established.

Although attention has been concentrated on flat thin plate ele-
ments, the consideration of the effect of curvature in the discrete
elements has been also briefly investigated.

Arbitrary, in space and time, dynamic loads can be treated by
matrix approach with relative ease, since assigning concentrated forces
to the node points and expressing their time dependency in the form of
Fourier series transforms the differential equation of motion into
coupled algebraic equations which are well suited for computer
solution. The importance of the usc of dynamically equivalentl mass
matrix, if high accuracy is required or if large element approach is
used, has been established in this research.



II. BRIEF REVIEW OF THE STATE-OF-THE-ART

The classical solutions of the dynamics of shells follow the
well-traveled path outlined by Love® and Flugge. L ¢ Such solution,
except in the simplest case, is prohibitive due to the mathematical
difficulties involved.

The finite difference method coupled with relaxation procedure
provides a far more versatile method than the classical solution, ' but
in most of the cases, the differential equations of motions of shells of
arbitrary shape cannot be derived, thus the finite difference solution is
limited to classical problems.?® " Further complications arise in con-
sideration of arbitrary boundary conditions such as partial elastic
supports, etc.

The energy methods in form of: 1) conservation of energy,
2) virtual work, 3) minimum potential energy, and 4) complimentary
energy are powerful tools, but they do not lend themselves to easy
computer use. 8

Hrennikoff’ replaced the continuous material of elastic body by
a frame work of bars arranged to a definite pattern. The impetus to
Hrennikoff discrete element solution was given by the invention of high
speed electronic computers. Pioneering work in developing the dis-
placement method using stiffness matrix formulation (direct stiffness
method) is due to Turner, Clough and Martin, 1 who replaced two and
three dimensional structures by an assemblage of plates and beams
and of other basic structural elements.

Argyris'! introduced the 'force method, "' which represents the
expansion of the classical solution of statically indeterminate struc-
tures. The stiffness and force method can be formulated in completely
parallel form.

The combination of above discussed discrete element methods is
"the displacement' method based on the use of flexibility matrix. 12
Among other things the argument in favor of the use of stiffness
matrices is that it saves considerable amount of computing time and
storage allocation.

Although discrete element methods for solution of complex
static and dynamic stress problems require considerable further
research efforts, they hold great promise for economic solution of



complex stress problems. One part of the improvements should come
from introduction of more realistic representation of the continuum by
discrete elements, while the other equally important improvement
should come from computer designers in the form of larger and more
powerful computers.



III. DISCRETE ELEMENT METHODS AND THEIR CONVERGENCE
CRITERIA

Matrix solutions of static and dynamic stress problems require
by their nature the discretization of the continuum into finite number of
elements. The equilibrium and continuity of displacement are expressed
at the node points. The representation of continua by discontinua is
common to all discrete element methods.

The most important finite element methods presently used are:

1. Displacement method using stiffness matrices (direct
stiffness method)

2. Displacement method using flexibility matrices
3. Force method (Argyris)

4. Method of transfer matrices

5. Klein's method

In all of these methods the investigation of the convergence of the solu-
tion to the correct value is of basic importance. Although this report
deals only with ''direct stiffness method', the following discussion con-

cerning convergence criteria is common to all discrete element
13, 14
methods. ™

Mathematically, the discrete element representation of con-
tinuum in the linear elastic range, strongly resembles the '""Ritz
method' used in solution of various stress problems in the theory of
elasticity, i.e., the true displacement state of the structure is
represented only approximately by the displacements of the discrete
elements, consequently the most general criterium of convergence of
the discrete element solution is the equality of the potential energy of
the real system (U,) and that of the substitute system, obtained by
assembling ''n'" discrete elements; thus

n

Ureal = Z Udiscrete, (1)
1

or considering the work of the external loads, equation (1) can be
written as



6()—5 TY—, z, t) p(_JZ, _}-;: -Z: t) =

n
$; (.Y, 2) P;(X, Yy, z t), (1a)

i=1

where 0 is the total displacement vector of the whole structure and ®;
defines the distortion of the structure due to unit load of coordinate
'i'" andP; is the generalized load vector at coordinate "i" in system X,

Y, Z.

From equations (1) and (la) follows that a similarity between
the final deformation of the discrete elements and that of the correspond-
ing region of the real structure must be maintained. Thus, all possible
motions (translations and rotations) of the node points must be
considered.

Furthermore, the deformation of the elements between node
points must also satisfy equations (1) and (la); consequently, the dis-
placements within the discrete element must be similar to those of the
corresponding part of the real structure.

Since stresses and strains are compatible and continuous within
the continuum, compatibility of all stress and displacements within the
element and at the edges between adjacent elements must be maintained,
which is another important requirement to obtain convergenceto the
exact solution.

Additional convergence criteria particular to direct stiffness
matrix approach to dynamics of shells used in this report, will be
discussed in Section VII.

The accuracy of the discrete element solution depends also upon
how well the discrete element idealizes the real continuum. In the
idealization of shell structures presented herein, flat square elements
are used (Figure 1), which will be subjected to stretching and bending.
Flat triangular elements are superior to rectangular ones in case of
idealization of shells of arbitrary geometry, (Figure 2), but the mathe-
matical difficulties in obtaining stiffness coefficients for triangular
elements using the method applied in this report are considerably
greater, thus the development of stiffness coefficients for '"compatible"
triangular discrete elements is left to future investigations. A simple
transformation of moderately tapered trapezoid elements into equivalent
square elements has been developed to extend the usability of the square
elements.
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Flat element representation of curved shell automatically vio-
lates the continuity of slope requirement along the edges of adjacent
elements. Folded plate idealization of cylindrical shells, however,
has indicated in more conventional approaches, * that such an idealiza-
tion is permissible, especially in case of static shell problems, and by
increasing the number of discrete elements, the solution converges to
the exact one.

If the shell is relatively flat or the subdivision is relatively
small, arbitrary shell surfaces can be also well approximated by
rectangular discrete elements. By the introduction of double curved
elements the geometrical fitting problem is considerably reduced.

Especially in case of dynamic problems, the proper load
representation, including that of inertia forces may effect the conver-
gence of the solution, i.e., the results of discrete element approaches,
converge but not to the exact solution. Thus the generalized forces
applied at the node points must satisfy certain energy requirements
which will be discussed later in detail.

Finally, the accuracy of the solution can be adversely effected
by computer errors inherent to operations with large matrices (See
Section X). Since direct stiffness method yields well conditioned,
symmetric, positive-definite matrices in band matrix form, in the
author's opinion, this approach is more suitable to handle complex
dynamic problems of arbitrary shells than others previously dis-
cussed. In addition, the ease with which any physically possible
boundary condition can be handled, 1 should not be overlooked.



IV. DYNAMIC ANALYSIS OF SHELLS BY DISPLACEMENT METHOD

The differential equation of undamped motion of any structure,
including shells of arbitrary shape, can be written in matrix form:

(o300} + [y) L T § ) = (k5507 {2500, (2)

where &; represents the vector of nodal displacements in a general
orthogonal reference coordinate system X, Y, Z (Figures 1 and 2):
~

T; (t)
vi(t)
% (t
Si(t)=<w’-() , i=1,2,3... (3)
O ()
Oy (t)

Oz (t)
- .J

and Pj (t) represents the vector of nodal forces in the same coordinate
system

~

N
Py (t)
Pyilt)
Pi(t)

N/

P;(t) =ﬁ (4)

Mz; (t)

Furthermore, [Kij] is the square matrix of stiffness coefficients of the

-

total structure,expressed again in the general reference coordinate
system, and [ m ij] is the mass matrix. The two dots in equation (2)
indicate the second derivative with respect to time. Matrix

{ mij 5J- (t)} represents the inertia forces. Because of its importance
in solution of dynamic stress problems in shells of arbitrary shape, it
will be treated in more detail in Section VIII.

In case of free vibration, the forcing function Pj(t) is zero,
thus equation (2) becomes



11

{o5(6)}+ (k517" {5 b5} = 0. (5)

Let us assume that the stiffness and mass matrices are already
known. We investigate the solution of the homogeneous differential
equation (5) in the form of

{oﬁi} = {oﬁi} sin{wt + ai)
{7} = {Vy) sin(wt + a))

{oWi} = {Owi} sin(wt + a;) (6)

~

where {oﬁi}: {O_V_i}, {o‘vVi} are column matrices of the amplitudes, w is the
"natural' angular frequency of the free oscillation and ajis an arbitrary
phase angle.

Substituting Equation (6) into (5) and performing certain matrix
operation we obtain:

(a1t -n[1] = o, (7)
where [I] is the identity matrix, and
A= wf 8)
Matrix [A] is the "dynamical matrix''? of order ''r'' obtained from:
_ -1
The inverse of the 'dynamical matrix' is:
-1 _ 7 ¢ -1 .
[A]7h = [ 0045070 (x50 (10)
Equation (7) represents the classical eigenvalue problem of

matrix algebra.18 the solution of which is readily obtainable by standard
computer programs, if the order of matrix is not excessively large.



Usually the general solution of the homogeneous matrix equation
(7) is not of interest. The required information for practical purposes

consists of natural frequencies and natural modes of the free oscillation
- R 3
oUir

ovzr

{ouir} = < . > X sin(wet + ap),

L oVnr

oVr

oV 2r

(virl= § 5 X sinfopt+ag). o (11)

{Oa’ir}: < ' > x sin(w.t + ay)

J
For obtaining the eigenvectors (11) pertinent to "r'" eigenvalues
again standard programs are available at any larger computer center.
The problems involved in computing eigenvalues and eigenvectors of
large dynamical matrices are treated later in detail.

To determine the displacement components produced by forced
vibration Navier's solution is applied, which transforms the differential
equation of the undamped vibration (2) into coupled algebraic equations.
In order to achieve this highly desirable transformation, it is required
that both the forcing and displacement function have the same type of
time dependency.

12



Thus if the arbitrary time dependency of the concentrated nodal
force is expressed as:

{P.(t)} = - sin p_.t, (12)
’ Z “1m i

then the displacement vector must have similar expression:

(16 =) { A\ bsin ot (13)
m im

or taking, for instance. the components of both vectors in the X
direction, equations (12) and (13) can be written as:

{Pii(t)} =z pim sin p_ t, (12a)
m

and

T} =Z {Tim} sin p,t. (13b)

m

Similar expressions can be written for the other components of
the force and displacement vectors. The determination of the constant

% ‘m in case of arbitrary loads will be discussed in Section VIII.
i

Substituting (12a) and (12b) into the differential equation of
motion and canceling the trignometric factor which appears in all terms,
coupled algebraic equations, for any specific m value, are obtained:

{Tim?} - P'm [Ky5]7" [ W i) Tim!} = [ki;17" { Pim > (2a)

from which the only unknowns {ﬁim} representing the amplitudes of the
displacement component can be readily obtained, since computers are
extremely well suited for solution of coupled algebraic equations.

Substituting ﬁim into equation (12b) and carrying out the summa-
tion, the displacement vector in function of time in the X direction is
obtained. Similar procedure is followed for the other displacement
components.

13




Knowing the displacements U, Vv and W at each point, the internal
forces and stresses are obtained from the classical shell theorym’ 20
(Figure 3):

_ ’w Fw D
m, = -D 5%% +v 8?2
’¥w | Fw
m, = -D(W +va_2)
PYw
Myy = -D(1 - v) oy my .y
3 -
gy = -D . viw
L (14)
9 2—
qy = -D 5-}’— Vew
Eh [9%2u v
ne =T [a_— bvas - gt ka>w]
Eh |9v Iu —_
ny = l-vz [a? +v 5% - (kv"" ka)Wj|
_. .En_ 23 ov
Txy T Pyx T 2(1+v) |67 T ax | 3

where E is the modulus of elasticity, v is the Poisson's ratio, D is the

19, 20 . 1 1
> and h the shell thickness ky = ==, ke = —
Ry V¥ R-S_’-

represent the curvature in X and ¥ directions respectively (Figure 3).

flexural rigidity

Equations (14) are conveniently solved by finite difference’ representa-
tion of the first and second derivatives using computers again.

The key to the solution of the dynamic response of shells of
arbitrary shape is the determination of the stiffness matrix [Kij] of the
total structure. In addition to the already mentioned advantages of the
direct matrix approach is the ease with which the stiffness matrix of
the complete structure can be obtained from the element stiffness
matrices Pij-

14
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Let us assume that the element stiffness matrix [pi.] in its local
coordinate system is X, Y, Z (Figure 4) has been already determined.
(For determination [pi-] see Sections VI and VII). In order to express
the element stiffness coefficients in the general reference coordinate
system, first, a coordinate rotation is required. That is to say, the
local coordinate system X, Y, Z of each element will be rotated into a
parallel position with the reference coordinate system X, Y, Z of the
total structure. This can be readily accomplished by the following

: . 13,21,
matrix operation :

[ki;] = [T]7 [py3] [T], (15)

or since it is an orthogonal transformation, equation (15) can be written
as

[kij] = [T1" [p5;] [T, (15a)

where [k1J] is the element stiffness matrix in X', Y', Z' coordinate

system (Figure 5), [T] is a transform matrix containing the directional
cosines (Figure 5):

ENE ey (16)

where subscripts n=1, 2, 3, represent the number of node

points of the element (which is in our case n=1, 2, 3, 4), and

My x! Hxy! Mgzt 0 0 0
p‘yx' P‘yy' Hzz! 0 0 0
T, = Mgyt Mgy My 0 0 0 (16a)
0 0 0 Pxx'  Pxx' Hxz'
0 0 0 Pyx' |J.YY1 “‘Lyz'
| 0 0 0 Mogx! Hzy! Mzz'

where the subscripts refer to the corresponding coordinate axis as
shown in Figure 5.

16
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The stiffness matrix of the total structure is obtained by alge-
braic addition of the overlapping stiffness coefficients of the elements.
Since for even a relatively small shell, the order of the stiffness
matrix is quite high, automation in compiling the stiffness matrix is a
must, which is discussed in Section X.

It is expedient to take care of the boundary conditions of the
individual elements before compiling the stiffness matrix [K1] If any
motion at any node point is prevented by the support, the corresponding
rows and columns of the element stiffness matrix must be deleted.
Failing to do so the resulting matrix is singular, and consequently
cannot be inverted.

Similar is the situation with flight structures if all rigid body
motions at all node points are permitted. In order to avoid the
singularity of the stiffness matrices of flight structures, artificial
supports must be introduced at certain points.

Equally simple is the treatment of elastic supports (Figure 6),
since it is merely required to add algebraically the stiffness factor of
the elastic support to the corresponding stiffness element of the dis-
crete element:

Pij ij

Orthotropic shells (Figure 6), if the orthotropy is caused by
corrugation or by small stiffeners, can be transformed into isotropic
shells as follows:?* 2>

Ee ‘VEXEY

G, = = , (18)

2(1+v,) 2[l+4/vxvy]

where subscripts x and y and e refer to the elastic properties in X and
Y directions and to those of the equivalent shell, respectively.

Layered shells (Figure 7b) formed by curved ''sandwich' panels
can be handled approximately in a similar manner, that is to say, first
an equivalent shell thickness is determined in X and Y direction as
follows:

18
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E
h, = = h it width),
e E, (per unit width) (19)

where E_ represents the reference modulus of elasticity, from which an
equivalent moment of inertia can be easily derived; more exact ways in
handling thick layered and built-up shells can be found in the pertinent
literature. 2 %°

The sign conventions for translations, rotaticns and fur Lhe conju-

gate forces and moments used in this report are shown in Figure 4 for
local and for general reference coordinate systems.

The stiffness coefficients of beams and bulkheads are obtainable
from the literature. ¥ 2!

20
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V. SMALL VS, LARGE ELEMENT BEHAVIORS

The problems inherent to operations with large matrices, espe-
cially in dynamics of shells, might be considered as a serious limitation
of discrete element methods using large numbers of small elements to
obtain an answer which has 5% — 10% discrepancy in comparison with
the ""exact'' solutions.

Although considerable developments are expected in the future
in computer design as well as in matrix analysis, in the coming 10 to
15 years there will be a pronounced need for drastic reduction of the
size of the '"dynamical matrix.'" The use of a syrnme’cry?‘4 and the
method of substructures®® ?7 are among the most widely known methods,

at the present, to achieve this objective.

Szilard® has proved that the use of properly derived ''large
element' stiffness matrices reduce the order of the stiffness matrix
of the total structure drastically. With a small number of large ele-
ments the same accuracy can be obtained as with a large number of
small elements thus the economy of the use of large elements is evident
(Figure 8). In the derivation of large element stiffness matrices no pre-
scribed deflection pattern is forced on the edges as is the case in small
element behavior, (Sections VI and VII) but unit motions (translations
and rotations) are introduced at a node points of the shell element
while holding the other node points fixed. The compatibility of stresses
and strains within the element and at the edges is obtained by solution
of the corresponding differential equations of the theory of elasticity.

It is interesting to note that the convergence characteristics of
the large element approach are opposite to those of small element ap-
proaches as shown in Figure 9. There is an optimum large element
size which results in the best accuracy with the smallest number of
discrete elements, the analytical determination of which requires ex-
tended future research.
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VI, DERIVATION OF THE MEMBRANE PART OF STIFFNESS
COEFFICIENTS

Although a survey of the literature® ' indicates the availability

of stiffness matrices produced by stretching or bending the flat plate
discrete element, most of them violate either the compatibility of
stresses,or displacements,;or both. In the following, a new method
which assures complete compatibility, is given considering small ele-
ment behavior. Basically the same approach can be used for large
discrete elements®® and for double curved elements.

Considering small element behavior the stiffness coefficients,
expressed in a conveniently located local coordinate system (Figure 4),
are obtained by prescribing certain edge displacements or edge
stresses which result in motion (one motion at a time) of one node
point while the other node points are held fixed. The active and reac-
tive forces (and moments) assigned to the node points yield the coef-
ficients pjj of the stiffness matrix of the element in the local coordinate
system.

In this report displacement functions will be assigned to edges,
thus the discrete element is called a displacement model resulting in
lower bound approaches to the solution of static and dynamic stress
problems.

In addition to the general requirements concerning convergence,
which were discussed already in Section III the following specific re-
quirements apply:

a) The first critical phase is the selection of suitable edge
displacement functions, which assures monotonic convergence to the
exact solution as finer subdivisions are used. The in-plane loading of
a two dimensional continuum with a concentrated force results in an
exponential type deflection curve, 28 which in a small region can be well
approximated by straight lines, satisfying the general energy require-
ments {((1) and (l1a)) of the discrete element solution; i.e., the potential
energy of the original and the assembled structures will be the same if
the number of subdivisions approaches infinity,

b) The second critical step concerns the method used in eval-
uating the edge displacements.

c) The third concerns the assignment of edge forces to node
points so that the resulting stiffness matrix is symmetrical.



where kyx and ky are the curvatures in X and Y directions, respectively.

In order to assure complete compatibility of displacements and
stresses within the element the differential equations of equilibrium of
shallow shells (Figure 3) in function of the three displacement compo-
nents have been derived:

~
0’y 1-v 9%  1+v 0% ow (1-v?%)

axz + 2 ayz + 2 axay - (kX+ka) 8x = - *Eh Px
%v 1-v 8% 1+v 0% ow (1-v?)
y2 V2 Bx? T T2 Bxoy Ky tVRx)go = - T by
(e v k) 22 (ko + vk 12 4 (? + k24 2vkky) w +

b4 Y)ox = VY X dy X v vkxky ) w

h® _, Pz 2
+ = Ve = = (1-v)),

12 gn (1) J

Since for the idealization of the shell elements used in this re-

port flat discrete elements have been assumed (kx =0 and ky =0) the
resulting three differential equations of equilibrium are partially un-

coupled yielding:

and

where

2 2 2 2 7
3u+l-v 8u+l+v v (1-v%)
ox* © 2 oy?' 2 08xdy  En Fx’

>
3y + 1-v &y + 1+v d%u _ (1-v%)
oyt 2 a2 ' 2 ©8xdy  Em PY 3

DV*w = Py »
h3

b - —ER

12(1-v*)

represents the flexural rigidity of the shell or plate. 19

(21)

(22)

(23)

Equation (21) is the differential equation of equilibrium of the
two dimensional stress problems, while equation (22) represents the
well known plate equation19 derived by Kirchoff.
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By solving the differential equations of the two dimensional
stress problem21 for prescribed straight line edge motion, the required
compatibility of stresses and displacements within the element are fully
satisfied.

In order to assure complete compatibility of edge displacements
and edge stresses the method of images as shown in Figure 10, is in-
troduced. Because of the material contihuity not only the displacements
of node points of adjoining discrete elements but the displacements along
the lines connecting the node points are the same. Furthermore, by
solving the differential equation of the two dimensional stress problem
of the 2a X 2b element (Figure 10), the compatibility of stresses along
the edges is also ensured.

In solving differential equations (21 a and b) finite difference
method has been utilized. Symmetry of loading and structure could be
exploited by using '"guided'" boundary conditions, as shown in Figure 11
corresponding to one type of motion allowed along the edge moved.

For finite difference subdivision an 8 X 8 mesh size was used (Figure
11). The finite difference solution, which is symbolically shown in
Figure 12 has yielded u and v displacements, from which the edge
reactions have been obtained:

x = 102\ ax vay
Eh [ov ou
el e 2
ny 1-V2 (ay + Vax) b) > ( 4)
_ _Eh <§2+ dv o)
Xy T 2(l+v) \dy  ox) J

Since linear edge displacements have been described singularity
was not a problem in obtaining the correct solution.

The so derived distributed edge forces had to be assigned to the
node points so that the resulting matrix is symmetrical. The conven-
tionally used method which assigns statically equivalent concentrated
forces and moments to the nodes works only in the simplest cases and
results in an unsymmetrical stiffness matrix, which, especially in
structural dynamics, creates considerably difficulties in the matrix
and computer operations.
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In order to achieve the required symmetry in the stiffness ma-
trix of the element, virtual work of the external forces (active and
reactive) has been utilized. The possibility of achieving symmetry in
stiffness matrix via change in potentials of external forces instead of
the customary internal ones, as far as the author knows, has been
overlooked by previous investigators. 29

Let us assume that the stress field {ri} due to the imposed unit
motion of node "'i'"' and due to the linear edge displacement between
nodes '"i'" and "j" as shown in Figure 13a has been already determined.
The stress field {5;} is an equilibrium field if we consider all the edge
forces. By introducing a small compatible virtual displacement at
node "j'" while holding the other nodes fixed (Figure 13) we introduce
a compatible strain or displacement field {¢;}.

Virtual work is a scalar product of two vectors having the same
direction, which can be expressed in terms of internal potentials:

WEKirtual =j {O'iT} {ej}dv (25)
A"
where
r~ f au' W
7 e}
ox 1 v 0 o
E avi |
foi} = < Ty \ = " v 1 0 i By (26)
- du; 9vji
L‘r 0O O lzv ) L + 3x1
-J - - L y v,

The strain matrix of the compatible displacement field is:

~ )
[ ew
X ax
E-} = €. > = 8—VJ- (27)
j y By
ovj avj
LYJ oy * ox
- 7

The integration shown in equation (25) should be extended over
the total volume of the element.

28
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The virtual work of the edge forces {F;} and the compatible edge
displacement {dj} are obtained from:

WKyirtual = % {F;I‘} {dj}d'e’ (28)

where the matrices of distributed edge forces and edge displacements
are:

nxi uj
{Fi} =< nyj and {dj} =9 vj . (29)
Nyxyi ej

The integration indicated in equation (28) must be extended to all edges
of the discrete element.

Since the virtual work of the edge forces must be equal to that
of the internal forces, we may write:

ST pav = § wT) @ . (30)
Vv 4

The virtual work of the concentrated force and moment at the
node points must equal the virtual work of the internal forces,
consequently

Pij 1 =j {(IT} {€j}dV ) (31)
v

from which utilizing equation (30) the required stiffness coefficients
can be obtained:

pij = § I} (aar, (32)
£

but since

oii = [ €T ey = [ETerav = oy, (33)
A\ A"

the required symmetry of the stiffness matrix of the element has been
established.



The results of these computations, expressed in the local coor-
dinate system are given for a square discrete element in Table I. The

sign convention and the numbering system of the motions and forces
are shown in Figure 4.

Eight free body motions of the corner nodes have been consid-
ered. The rotation around the Z axis, due to the rigidity of the shell to
resist such motion has been neglected. The first subscript indicates
the location and direction of the force, while the second refers to the
motion which has caused it.

A lengthy computation, such as described above, always re-
quires intermediate checks in order to avoid repealed errors. The
first check applied was satisfaction of equilibrium of the active and
reactive forces in form of:

=X =0, ZY =0, Mg =0 . (34)

The second check should consist of the pointwise satisfaction of Max-
well's law of reciprocity

{Fij} = {Fj) . (35)

The symmetry of the stiffness matrix® represents the third
check. While the fourth check is again an equilibrium check™ of the
concentrated forces assigned to the node points. That is to say, the
columns of the stiffness matrix must satisfy the macroscopic equilib-
rium condition discussed previously. The final and most important
check is the testing of the convergence characteristics of the discrete
element solution against known analytical solutions as is discussed in
Section XI of this report.

Finally it should be mentioned that obtaining stiffness matrices
by the above mentioned procedure is tedious, but computers can ease
the burden of the task considerably. Since the numbers are reusable,
they should be computed only once for any geometry or aspect ratio.

31




[Pij(m)]

s
Table I. Membrane Part of the Stiffness Coefficients

i 2 3 4 5 6 7 8

1 0. 429
2 0.1674 0. 429

-0. 254 0.0073 0. 429 SYMMETRIC
4 -0.0073 0.079 -0.1674 0. 429
5 -0.254 -0.1674 0.079 0.0073 0. 429
6 -0.1674 | -0.254 -0.0073 { -0.254 0.1674 | 0.429
7 0.079 -0.0073 | -0. 254 0.1674 | -0.254 0.0073| 0. 429
8 0.0073} -0.254 0.1674 | -0.254 -0.0073 | 0.079 {-0.1674 | 0. 429

Note: For numbering and sign convention, see Figure 4.

Eh
1-v2
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VII, DERIVATION OF THE FLEXURAL PART OF THE STIFFNESS
COEFFICIENTS

The procedure to obtain the stiffness coefficients due to bending
of the flat discrete elements is essentially the same as described in
the preceeding section for in-plane motions. The small element defor-
mation patterns due to unit nodal displacements are affine to (but not
the same as) those of a beam subjected to bending, which can be de-
scribed by cubic type polynominal expressions.

In order to avoid any 'gnessing' concerning the form of the de-
flection patterns unit motions (lateral translation and compatible rota-
tions) are introduced at the node points. Applying again the method of
images (Figure 14) the edge reactions due to these motions are obtained

by solving the differential equation of the plate problem22 and the resulting

edge forces'* by a finite difference method (Figures 15 and 16) using
10 X 10 subdivision.

The differential equation of a plate in finite difference form can
be expressed as

20wq - 8{witwrtwatwy) + 2(wgtwgtwetwg) +
)\Z(Pzzl)

+W9+W10+W11+W12= D

(36)

Unit translation at node point "i'" is obtained by a simple nor-
malization process

= — . (37)

In order to check the accuracy of the finite difference solution
the deflection surface w;(x, y) has been computed using Galerkin's
method. The deflected plate surface has been approximated by the fol-
lowing double Fourier series:

1 mmx nmry
w;(x, y) =Zzzwmn <l-cos a ) . (l-cos : )
m n

m=1,3,5. .. n=1,3,5.

(38)

33



Gridwork of
Fixed Finite Difference Solution

\\” /
/ " Guided "
/ / Boundary

Figure 15. Finite Difference Solution for Plate Bending

Jo

9

\2 )\7

O e

\9 L
Y

15 4 18
N N

]

| x
I

| i

Y

I
T

O
—(

n

Figure 16. Finite Difference Grid Reference

34



A concentrated load in magnitude of 4P, = 4 has been applied at
the center (x = a, y = a) of the image plate of magnitude 2a X 2a size,
and the result has been normalized according to equation (37). A good
agreement between the analytical and finite difference solutions has been
established.

The compatible unit rotation of the plate has been obtained by
prescribing the pertinent beam deflections at the edge of the plate and
solving equation (36) for the prescribed edge displacements.

The distributed forces and moments along the edges of the dis-
crete element have been computed using finite difference forms’ of
equation (14). The assignment of the distributed edge forces to the
corner node points has followed the previously described method based
on virtual work on the edge forces as given by equation (32). Displace-
ment patterns to one specific application of virtual work concept are
shown in Figure 18. The bending part of the stiffness matrix of a
rectangular discrete element is given in Table II.

The macroscopic equilibrium of the element in form of
ZMy = 0; ZMy = 0; ZZ =0 (39)

has been again approximately satisfied.

In dealing with arbitrary geometrical shapes the use of trape-
zoidal discrete element is mandatory. Trapezoidal discrete elements,
can be approximated as shown in Figure 19.

If the original structure is a plate, compatibility requirements
of stresses and displacements within the element and at the edges of
the adjoining element has been completely satisfied. In case of shells,
however, compatibility of slopes at the edges is violated since curved
surfaces are approximated by flat elements. The violation of slope
compatibility can be removed only by introduction of curved elements. 24

Finally, in connection with development of the bending part of
the stiffness coefficients, the large element behavior of discrete shell
elements should be mentioned. As has been discussed earlier the small
element behavior of a plate in bending resembles that of a beam, while
its large element behavior resembles that of a beam on elastic founda-
tion as shown in Figure 20. The convergence of the derived solution is
described in Section XI.
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VIII. ARBITRARY DYNAMIC LLOADS AND INERTIA FORCES

In most cases the stress analyst is confronted with the deter-
mination of the dynamic response of shells of arbitrary shape subjected
to arbitrary (in space and time) dynamic loadings. Because of the com-
plexity of the problem either ''equivalent' static loading or other type
of crude approximations are used.

The matrix method described herein permits the consideration
of any arbitrary loads, (including blast loads) regardless of its space
and time variation. Let us discuss first the time dependency of such
« load.

Equation (12) can be written in the following form:
30 =) &) {Rim } sin pmt (10)
™

Where{R}im sin pyt represents the time dependent part of the dynamic
force, and

Pm =~ (41)

is the circular frequency of the Fourier expansion while {R;} is the
column vector of the generalized nodal forces.

Any arbitrary time variation can be expressed by Fourier sine
series, since by proper continuation of the forcing function even a non-
periodic load can be made periodic. In Figure 21 a blast load is shown.
Using T = (10 = 15)tq for the half period of expansion the effect of the
fictitious negative load can be retarded long enough so that it does not
influence the dynamic response of the structure to the real load. The
validity of this statement will be proven by numerical example in
Section XI.

Following the rules of Fourier Series expansion of an arbitrary

function f(t) the amplitudes of the time dependent part are obtained
from:

T
2 mw
im = T ff(t) sin —/— dt . (42)
0
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If the forcing function f(t) can not be expressed analytically or the eval-
uation of the integral in equation (42) is too time consuming numerical
integrals can be used to advantage.

The simplest way to handle loads which are distributed arbi-
trarily in space is to assign concentrated forces and moments to the node
points which are statically equivalent (force and moment) to the arbi-

a
trary distributed loads acting on surface of one element. This

4

approximation yields satisfactory results only if relatively large num-
bers of elements are used.

If the subdivision is coarse, or a 'large element'' approach is
used, the proper representation of variable surface loads by generalized
nodal forces are of increased importance. It can be stated that the
accuracy of the discrete element solution of dynamic shell problems is
markedly improved by proper load representation, which includes the
inertia forces.

The components of the nodal forces in the local coordinate sys-
tem, (see equation (40)) which are equivalent to arbitrary distributed
loads acting on a discrete shell element is obtained from virtual work:

ab T
R; =fj{aj (% Y )yi praal P y)} dxdy, (43)
0

0

which in case of lateral loading takes the form of:

ab
Rzj =f_/Wj(x, Y)virtual * Pz{x,y) dxdy, (43a)
0 0

where wj(x, y) is obtained from the virtual unit displacement of node ''j"
in the Z direction, while the other nodes are held fixed. Since the re-
sulting deflected surfaces considering small element behavior, have
been already obtained for determination of stiffness coefficients, the
numerical evaluation of the double integral by computer is quickly
achieved. In Table III u(x, y) and v(x, y) values for unit in-plane motion
are listed, while Tables IV and V give the numerical values of w(x, y)
for unit translation and for compatible unit rotation of the nodes,
respectively.

Since equation (43) is not as sensitive to approximation of de-
flected surfaces, as the determination of stiffness coefficients is, usable
values can be obtained for the generalized nodal forces by approximating
the above mentioned three displacement components by:
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uj (%, y) = § % (44)
vil{x,y) =0,
and
2 3 2 3
I _ X X . Yy _H (X
don- B B w
or

II
wi(x,y

~—

<\ 2 x y 2 v 3
= - 1- - . 3 - 2 .
6 (2] BE)-26) )
The previously described rotation of coordinate system will express
the force components in the general reference coordinate system.

A similar procedure can be followed in case of inertia forces
substituting

P(x,y) = m &yirtual » (47)

into equation (43), where m represents the mass of the element per unit
area and the two dots are the second derivatives with respect to time,
representing the acceleration of the structure.

Especially in case of free vibrations the use of ''consistent
mass' matrix, whose elements are derived from the kinetic energy
associated with the displacement of the shell elements, is of basic
importance.

The coefficient m°;; of[ moij] matrix (in local coordinate
system) are obtained from!'7r 3

ab
0
M ij = m 3%, y) &j(x, y)dxdy , (48)

where &; and <I>j are displacement functions associated with the unit
point displacement 6; = 1 and §j = 1, respectively, when all other nodes
of the element are fixed.

Since &j(x, y) and c1>j(x, y) are the very same displacement com-
ponents required for the determination of elements of the stiffness
matrix, their values can be obtained either from Tables III, IV and V

—~ - —kt . I AAN d AN o AL
or from equations (44), (45) and (%0).
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Again a rotation of the coordinate system similar to that used in
case of stiffness coefficients will transform the consistent mass matrix
from the local to the intermediate or general reference coordinate
systems:

(] - [ [ms) [2]
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IX. AUTOMATION OF THE COMPUTATION

The elements kij of the stiffness matrix expressed in the gen-
eral reference coordinate system can be easily compiled into the stiff-
ness matrix [k;j] of the entire structure without resorting to tedious
element by element input approach. First [kij] matrix expressed in
intermediate coordinate system is altered to take care of the boundary
conditions as described previously. Then a proper numbering system
is introduced, which would result in a band matrix, heavily populated
in the vicinity of the main diagonal. This can be achieved by: (1) proper
grouping of nodal points, and (2) using proper sequential order in
numbering the displacements at each node peoint.

No set rules can be given for grouping of node points since it
depends largely on the geometry of the total structure. In case of long
cylindrical shells, for instance, meridional grouping is more expedient
than longitudinal; while longitudinal grouping might be superior for short
cylindrical shells.

Within each group the u, v, w, Bx, ey, displacements are col-
lected point wise following a predetermined sequence (u, v, w, 6, GY).
This procedure yields five band matrices containing fully populated
submatrices.

A descriptive flow diagram for automatic compiling the stiff-
ness matrix is shown in Figure 22. The same flow chart can be applied
logically for compilation of the '""consistent" mass matrix[ T ij]-
Figures 23 and 24 show the flow chart of computer solutions for forced
and free vibration analyses respectively.

Eigenvalue, eigenvector and matrix inversion computer routines
for large matrices have been checked and documented by Denver Re-
search Institute under a NASA Research Grant. *
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Figure 24.
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X. MATHEMATICAL PROBLEMS INHERENT TO LARGE
MATRICES

The algebraic manipulation of matrices and matrix equations
presents no problem for solution of all the elementary operations as
well as for the characteristic numbers or eigenvalues. The methods
are numerous and well expounded in the literature and computer pro-
grams are plentiful. 3

Reduction techniques, elimination methods, triangular factor-
ing, diagonalization, and all the refinements of these methods for
finding a matrix inverse are subject to large errors because of simple
round-off. Two methods customarily used to reduce this error are
column scaling (not suitable for all matrices) and the use of double-
precision computer arithmetic, which more than doubles the significant
digits of each number but necessitates the use of subroutines which
increase computation time on the order of two to three times, a
prohibitively high price for most applications. In addition, valuable
machine storage is lost. The direct methods (non-iterative) of
matrix inversion are generally recognized to be well suited to com-
puter techniques because they permit the reduction of a matrix, A, to
an array which can be saved for use at any time of solution of the
matrix equation, [A] {X} = {B} with different righthand sides. In order
to avoid slow iterative refinements, there is a real need for error
analysis and the choice of computational methods which minimize the
errors that are intrinsic to the computations in solving the problem
of the general matrix of large order. The alternative Monte Carlo
methods provide a simple computational approach to the statistical
estimation of the elements of the inverse which are not affected sub-
stantially by round-off and truncation error, but the statistical vari-
ation of the results tends to be quite large in most cases until refined
by many additional random walks. Therefore, the technique is most
widely used for obtaining rough estimates very quickly, and for single
column inversions, useful for point loads. An iterative process for
improving the inverted matrix to be computed to as high a degree of
accuracy as is required, but for very large matrices computer time
for handling the necessary matrix subtractions and multiplications
may be extremely costly. Partitioning techniques are widely used for
large matrices. For a non-definite and sparse matrix the problem of
selecting a square submatrix of useful size the determinant of which
is non-vanishing may be a problem. In any case, the computer oper-
ations are many and long and this is usually used as a last resort.
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The problems involved in solving for the eigenvalues of a large
matrix and the associated eigenvectors can be extremely expensive for
a general matrix of very large order. For a matrix size much greater
than 150 X 150 auxiliary equipment must be used for finding all the
eigenvalues of the system for a general matrix. The accuracy pro-
blem is much the same as for finding the inverse and the machine
time for an iterative process makes it feasible to solve for only one
or two critical values in this manner.

We find, however, that for certain classes of matrices, the ac-
curacy, machine time, and machine storage problems are considerably
reduced. These matrix characteristics are:

1. a real and symmetrical matrix
2. a positive-definite matrix
3. a relatively sparse matrix heavily positioned along the

main diagonals.

The symmetry requirement is perhaps the most vital in per-
mitting solutions of larger matrices. The number of computer operations
is considerably less with almost all methods. For example, with the
triangular factoring technique time is cut considerably by virtue of the
fact that the upper triangular matrix is also the transpose of the lower.
This fact coupled with a theorem which states that the transpose of the
inverted unit triangular matrix is equal to the inverse of the transpose
permits rapid calculation of the inverse matrix. If a matrix is real and
symmetric, we can be assured of real eigenvalues and of a correspond-
ing set of vectors which are orthogonal. Normalization of the vectors
provides an orthonormal set of basis vectors in Euclidean n-space, an
important fact in eliminating the need for brute force simultaneous
equation approach used for locating the vectors of the general set of
homogeneous equation. The other requirements stated guarantee the
success for a variety of matrix methods, reduce the number of cal-
culations and generally improve accuracy.

The matrices resulting from the analysis described in the
foregoing sections are characterized by all of the above, and are
solved more quickly and more accurately because of this. Matrix it-
eration and partitioning may be necessary, but the number of iterations
will be reduced and the problem of selecting a leading sub-matrix which
is non-vanishing for matrix partitioning is no longer of consequence.



XI. NUMERICAL EXAMPLES

In order to illustrate the applicability and obtain information con-
cerning the accuracy of the matrix solution of shells, described herein,
numerical examples have been worked out and compared with known
theoretical solutions.

First the validity of Fourier series representation of suddenly
applied blast load has been checked using a one degree of freedom mass-
spring system as shown in Figure 25. The arbitrary continuation of the
time-~load function

£(t) = po (1 ; %0) (50)

is shown in Figure 25c. Having only sine terms, the Fourier coefficient
was computed from (42):

Tt
b 2 o f(t) si T tdt 2po co ] T+ U 6
= = m .
o 7t ) sin Tto nmw s 7 n nm sin 7 n

(51)
The first eight coefficients of the Fourier series expansion are
tabulated in Table VI,

Thus the Fourier (sine) series expansion of the forcing function
has the form

f(t) = Z b, sinnt = po [0.0Q45 sin t -

n

-0.07 i + 0. i t -
9 sin 2t 4+ 0. 105 sin 3 (52)

-0.124 sin 4t + 0. 151 sin 5t -0.113 sin 6t +
+0.091 sin 7t - 0. 063 sin 8t].

Expressing the deflections in a trigonometric series similar to
the forcing function

X =Z Xn sin nt (53)

n
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Degree System
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Table VI. Coefficients of the Fourier Series Expansion
2 3 4 5 6 7 8 9

7 om cos @ sin@ _r%r @@ ®+@ ﬁ E‘

154,29 -0.900 0. 433 2.23 0.970 0.07 0.639 0.045

308.58 0.623 -0.783 1.11 -0.87 -0.247 0.317 -0.079

462.87 -0.223 0.975 0.743 0.72 0. 497 0.212 0.105

617.16 -0.223 -0.975 0.558 -0.55 -0.773 0.159 -0.124

771.45 0.782 0.624 0. 446 0.28 1.162 0.127 0.151

925.74 -0.900 -0.433 0.372 -0.16 -1.060 0.106 -0.113
1080. 03 1. 000 0. 000 0.318 0.00 1.000 0.091 0.091
1234.32 - .0900 0.433 0.279 0.12 -0.780 0.080 -0.063

Note: Numbers in circle refer to the mathematical expression given in corresponding columns.
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and substituting (52)and (53) into the differential equation of motion

MX + Rx = £(t), (54)

the unknown amplitudes X, have been obtained from

i £(t)
n " (R-n2M) sin nt’

X (55)

The maximum displacement was x, .. = 0. 24 {ft while the
rigorous solution to the problem32 yielded X,y5x = 0. 28 ft, which is
close enough for all practical purposes. If desired, a closer agree-
ment can be achieved by using more terms and larger expansion
period (T > 15 ty).

The convergence of the membrane part of the stiffness co-
efficients has been tested using a deep beam problem (Figure 26) which
was compared with the rigorous solution obtained by Timoshenko. 3
The convergence of the bending part of the stiffness coefficients was
checked against a plate problem (Figure 27) with a known exact
solution.!” In both cases the solutions have shown monotonic conver-
gence towards numbers close to the exact ones. Although the sub-
divisions in both cases could be considered relatively coarse, the
discrepancy between exact and discrete element solutions was of neg-
ligible order of magnitude for practical purposes.

The free vibration of a cylindrical shell shown in Figure 28 has
been computed, yielding, w=1.19X 10* rad/sec for the lowest natural
frequency, while the rigorous solution of this problem has yielded
w=1.64X%10* rad/sec. The discrepancy was caused mostly by the use
of "lumped'" mass matrix, which as discussed earlier, may cause one
order of magnitude error. The second cause of discrepancy is the
neglect of curvature effects, which will be treated in detail in the
Section XII. Static loadings have yielded more favorable results.
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XII. THE EFFECT OF CURVATURE

Introducing curved elements instead of the flat ones, the pre-
viously derived stiffness coefficients of the element must be augmented
by a '"curvature term'':

I II
Py (curved) = Pij (flat) + Pij (curvature effect). (56)

To derive exact values for the curvature effect, considerable
effort is required, which was beyond the scope of this research.
However, preliminary comnputations have been carried out to establish
the order of magnitude of the curvature effects. For this purpose the
similarity which exists between the differential equation of plates on
elastic foundation and that of thin shallow shells has been utilized.

If ky = ky = k, the differential equation of thin shallow shell can
be written as
22 12(1-v%) k?

V'V'w + '_—hé"—W:

oy

, (57)

while the differential equation of equilibrium of thin plates on elastic
foundation has the form of

c
Viviw + = w= B, (58)
where c is the ""bedding' constant.

The comparison of equations (57) and (58) yields

c = k*Eh (59)

The lateral deflection w(x, y) was computed using Galerkin's
method, % in combination with method of images as shown in Figure 14.

The total energy of the plate of 2a X 2b dimensions can be
expressed as:

2a 2b
f ] (DVZW +cw) 6w dxdy = P, ow. (60)
0

0




The deflection w(x, y) has been represented in form of series:

wix,y) = Atfi(x,y) + Axfa(x,y) +. . . ALf.(x,Y), (61)
in which the functions f, f,. . . f, were chosen in form of
1
fr = 2 (1 - cosampx) (1l - cos By) > (62)
where
0 = mm A . nmw 1
m > ) Pm Ty
2 (63)
m=1,3,5. n=1,3,5

After obtaining the deflection due to P, = 1 lateral loading
acting at x = a and y = b, the deflections of the node points have been
normalized as previously described.

The results of this computation for two arbitrary curvatures are
shown in Figure 29 indicating a marked increase in the concentrated
lateral load required to produce unit translation of the node as curvature

. 34
increases.

Similar computations have indicated an increase in the gener-
alized moments producing unit rotation at the node point as curvature
has been increased (Figure 30).

It is evident from this preliminary investigation that the curva-
ture effects can change the stiffness coefficients up to 10% — 20%, thus
their consideration is highly recommended if high accuracy should be
obtained.

Another, probably more important reason for the introduction
of curved elements instead of flat ends, comes from the previously
discussed violation of slope compatibility at the adjoining edges. When
flat plate idealization creates significant angles between elements the
customary neglect of the in-plane rotation stiffness properties of the
discrete elements is unjustified; whereas, in case of curved elements,
the slope continuity is more completely satisfied, thus the effect of
in-plane rotation is minimized.
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XIII. FUTURE DEVELOPMENTS

Although discrete element method for determination of static

and dynamic response of shells is still in its infancy, the obtained re-
sults are highly encouraging. Future development should cover the
two equally important areas: (a) improvement of stiffness matrices,
and (b) solution of problems inherent to operation with large matrices.

In the field of improvement of stiffness matrices, the present

research has indicated positive need for:

9.
10.

Introduction of various aspect ratios a/b.

Development of stiffness coefficients for triangular curved
elements having various aspect ratios.

Derivation of readily usable coefficients for consistent
mass matrices.

The use of symmetry and/or the method of substructures
to reduce the order of stiffness matrix for free vibration
problems.

Derivation of improved stiffness coefficients for the
solution of three-dimensional stress problems in elastic
continuum,

Stiffness coefficients for determination of thermo-stresses.

Extension of the stiffness matrix solution into non-linear
regions covering (a) geometrical, and (b) material non-
linearities.

Derivation of stiffness coefficients for thick shells.
Use of large elements,

Verification of analytical results, by experiments.

Future pertinent research and development in the field of math-

ematical and computer support should include:

1,

Development of computer programs for inversion of large
(n > 1500) matrices,

Eigenvalue and eigenvector solution of large matrices.

Computers with larger storage capacity.
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Prior to any large scale research funding of methods for the
computer solutions of large matrix systems (inversion and eigenvalue-
eigenvector programs), a study should first be made of the computer
industry to determine their forecasts for computing time, machine
storage and equipment costs over the next few years. Sufficient time
and manpower has been spent in developing programs for standard
hardware systems (32 k) over the last few years, that only minimal
advances are being made at present. It should be understood that as
these programs are being developed they are simultaneously being
made obsolete by hardware advances in the computer industry.

Considerable part of the abuve listed required improvements
are currently under study at Denver Research Institute for the Flight
Dynamics Laboratory of the Air Force, Dayton, Ohio. 24




XIV. CONCLUSIONS

The research described in this report has shown the feasibility
of discrete element approach to complex static and dynamic shell prob-
lems. The cumbersome solution of complex differential equations
inherent to problems of this nature has been eliminated and replaced
by solution of simultaneous algebraic equations for which high speed
electronic computers are primarily suited.

The key to the matrix solution of complex static and dynamic
shell problems is the derivation of suitable stiffness coefficients. Thus
new, improved compatible stiffness coefficients have becn develuped
for flat plate elements and the effect of curvature has been briefly
studied. The method applied is highly expandable and all stress prob-
lems can be handled with basically the same approach. It follows an
approach which is familiar to structural engineers, rather than that of
structural researchers, regardless of the complexity of the problem.
Although the numerical computation of proper stiffness coefficients has
been found to be a tedious operation, the results are reusable and can
be furnished by researchers to the practicing engineer.

Limitations of the method along with the proposed improvements
have been treated.

The author believes that the discrete element method will
eventually replace all classical and semi-classical methods pres-
ently used by the designers for analysis of static and dynamic stress
problems in one, two and three dimensional structures. Consequently
the designer will be able to concentrate more on the '"creative'' aspects
of the design leaving the tedious computations to the computers.

O
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